If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-62x+23=0
a = 5; b = -62; c = +23;
Δ = b2-4ac
Δ = -622-4·5·23
Δ = 3384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3384}=\sqrt{36*94}=\sqrt{36}*\sqrt{94}=6\sqrt{94}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-62)-6\sqrt{94}}{2*5}=\frac{62-6\sqrt{94}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-62)+6\sqrt{94}}{2*5}=\frac{62+6\sqrt{94}}{10} $
| -6q-(-2)=8 | | 3(5.5+-2y)+5y=15 | | -16=-7-2x | | 1/10p=85 | | (x+75)(x+117)=180 | | 10=2+b | | 1/9n=75 | | 3y+10=8y-16 | | z-1/7=76/7 | | -9=3-3/4x | | 1.2x-8=28 | | 1/5l=58 | | 8x+6=3×+21 | | 9x+11=6x+29 | | 1/7c=47 | | y+4.2=8.1 | | 2(2x-1+2x=6(x-1) | | 1/8f=32 | | y/11+-4=2 | | x/20+13=11 | | 2(x-5)-4x=-30 | | 1/6b=18 | | 1/3y=24 | | 14+y=46;y= | | 15x+8*97=180 | | 3x+-4=5x+8 | | 3/8c=21 | | 14x+36-8x=5x-2 | | -4x=-15x | | 5x=5x-9 | | 12m+35=11 | | 4f=–5+5f |